Refine Your Search

Topic

Author

Search Results

Technical Paper

Multi-Disciplinary Vehicle Styling Optimization: All at Once Approach for Stiffness, Light-Weight and Ergonomics with Analytical Model Based on Compartment Decomposition

2003-03-03
2003-01-1330
The topology optimization made a great success in pure structural design in an actual industrial field. However, a lot of factors interact each other in a actual engineering field in highly complicated manner. The typical conceptual trade-off is that cost and performance, that is, since they are competing factors, one can't improve the specific system without consideration of interaction. The vehicle has lots of competing factors, especially like fuel economy and acceleration performance, mass and stiffness, roominess and cost, short front overhang and crash-worthiness and so on. In addition, they interact each other in a more complicated manner, that is, fuel economy has something to do with not only engine performance but also mass, roominess, stiffness, the length of overhang, trunk volume, etc. So, most of decision-makings have been made by management based on subjective knowledge and experience.
Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Technical Paper

A Study on the Vehicle Body Effect on Brake Noise

2016-09-18
2016-01-1917
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. Recently, the field claims regarding the creep groan noise are increasing. So far, creep groan noise has been improved by means of chassis modification the transfer system. But vehicle body the response system does not. In this paper, the effect between vibration characteristics of vehicle body, creep groan noise was analyzed. Then presented analysis method for vehicle body effect regarding creep groan noise.
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

2016-04-05
2016-01-1112
In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
Technical Paper

Understanding 3 Cylinder CVT Vehicle for Improving Fuel Economy and Reducing Noise and Vibration

2016-04-05
2016-01-1294
This study presents the NVH characteristics of a passenger vehicle with a three-cylinder engine and a Continuously Variable Transmission (CVT) and an optimization procedure to achieve balance between fuel economy and NVH. The goal of this study is to improve fuel economy by extending the lock-up area of the damper clutch at low vehicle speed and to minimize booming noise and body vibration caused by the direct connection of the engine and transmission. Resonance characteristics of the chassis systems and driveline have been studied and optimized by the experiment. NVH behavior of the vehicle body structure is investigated and modifications for refinement of booming and body vibration are proposed by simulation using MSC NASTRAN. Calibration parameters for CVT control are optimized for fuel economy and NVH. As a result, the lock-up clutch area has been extended by 300RPM and the fuel economy has been improved by about 1%, while the NVH characteristics of the vehicle satisfy the targets.
Technical Paper

Development of Output Voltage Adjusting Control Based on ADAS Map Information in Low-Voltage DCDC Converter System for HEV Fuel Efficiency

2016-04-05
2016-01-1236
One of the ways to improve the fuel efficiency of the HEV (Hybrid and Electric Vehicles) is to optimize automotive electric system. In order to achieve this, the LDC (Low voltage DC-DC Converter) variable voltage was controlled. Using the ADAS (Advanced Driver Assistance System) map, the charge-discharge behaviors of 12V lead-acid battery was predicted during driving so that, the battery could be charged efficiently. In this study, the feedback control system for 12V battery discharging was designed to compromise between the 12V battery SOC (State of Charge) and the driving conditions at different traffic points. In contrast to earlier approaches, this experimental result indicates that the LDC variable voltage control based on ADAS is able to reduce the LDC average output power by 17.1% therefore, increasing fuel efficiency and ensuring the durability of the 12V battery.
Technical Paper

Study on Characteristics of Motor Output Power Depending on Current Sensor Response in Eco-Friendly Vehicles

2017-03-28
2017-01-1222
The current sensor for motor control is one of the main components in inverters for eco-friendly vehicles. Recently, as the higher performance of torque control has become required, the current sensor measurement error and accuracy of motor controls have become more significant. Since the response time of the sensor affects the motor output power, the response delay of the sensor causes measurement errors of the current. Accordingly, the voltage vector changes, and a motor output power deviation occurs. In the case of the large response delay of the sensor, as motor speed increases, then difference between motoring and generating output power becomes larger and larger. This results in the deterioration of power performance in high-speed operation. The deviation of the voltage vector magnitude is the main cause of motor output power deviation and imbalance through the simulation.
Technical Paper

Study of Active Steering Algorithm Logic in EPS Systems by Detecting Vehicle Driving Conditions

2017-03-28
2017-01-1481
Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
Technical Paper

Ride Comfort Improvement of a Compact SUV Considering Driving Maneuver and Road Surface

2011-04-12
2011-01-0558
In general, the ride and handling characteristics of a vehicle are strongly dependent on chassis parameters that come from the kinematic and compliance properties of a suspension system. For ride comfort improvement of a compact SUV with increasing handling performance simultaneously, this research proposes a new quantitative approach by considering various driving maneuvers and road surfaces. Particularly, five different road surfaces were used for ride comfort analysis, and this analysis was performed for two different vehicle speeds on a cleat road profile and three different vehicle speeds on a rough road profile. The contribution analysis of a suspension and a seat structure to ride comfort was investigated in order to decide an optimal structural combination. It was shown that contribution of each factor is different according to road profiles and driving conditions respectively.
Technical Paper

Analysis of Muscle Fatigue for Urban Bus Drivers using Electromyography

2011-04-12
2011-01-0801
Professional bus drivers are highly exposed to physical fatigue and work-related injuries because driving task includes complicated actions that require a variety of ability and cause extreme concentration or strain. For this reason, there has always been some sense of concern regarding driver fatigue, especially for drivers of commercial vehicles. In this study, we have tried to analyze quantitative fatigue degree of urban bus drivers by measuring their physiological signals. The investigation is made up of the following approaches: a traditional questionnaire survey and video-ethnographic method with 4-way cameras. The close-circuit cameras are installed to observe the upper and lower body of real drivers when they are in driving or even resting. This approach can help to understand urban bus drivers' behaviors and fatigue-related issues. Based on the video-ethnographic investigation results above, we have got certain patterns of drivers.
Technical Paper

An Improvement Research of Under-floor of Midsize Sedan-Focusing on 2010 New YF Sonata Development Examples-

2011-04-12
2011-01-0772
Hyundai Kia Motors started developing the under-floor of YF sonata, the base platform for mid-to-large size sedans, in order to reduce weight and improve body performance. For local dynamic rigidity, there are design improvement and additional support structures at suspension mounting area. The strength at the joint where longitudinal and transverse members meet is increased to improve the overall body stiffness, and also the riding comfort and handling. Impact performance and safety is also improved by straightening the major structural members and strengthening the joint areas, efficiently absorbing and inducing the impact energy through load paths. As the body of a vehicle is the constitution of numerous parts, increased strength at the joints and major structural members with more linear profiles have played crucial roles in the improvement in overall body performance.
Technical Paper

Development of Effective Exhaust Gas Heat Recovery System for a Hybrid Electric Vehicle

2011-04-12
2011-01-1171
The success of improved fuel economy is the proper integration of thermal management components which are appropriately performed to reduce friction and wasted energy. The thermal management systems of vehicle are able to balance the multiple needs such as heating, cooling, or appropriate operation within specified temperature ranges of propulsion systems. Since the propulsion systems of vehicle have changed from a single energy source based on conventional internal combustion engine to hybrid system including more electrical system such as full type of hybrid electric vehicle or plug-in hybrid electric vehicles, a new transition associated with vehicle thermal management arises. More efficient thermal management systems are required to improve the fuel economy in the hybrid electric vehicles because of the driving of electric traction motor and the increase of engine off time. The decrease of engine operation time may not sustain the proper temperature ranges of engine and gearbox.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

A Study on the Method to Manage the Weight and Cost of a Vehicle by Adjusting the Parameters of Styling Profile

2018-04-03
2018-01-1025
Since the fuel efficiency of vehicle has become one of the big issues due to environmental pollution problems, many studies have been conducted on various methods such as improving powertrain performance and aerodynamic performance, reducing the weight of the vehicle and so on. There have been many new attempts to reduce weight but mostly about improving material property. In the case of vehicles sharing the same platform, the weight and cost of vehicle are mainly changed by the exterior styling. But, there is no solution to control the exterior styling in terms of the weight and cost of vehicle, yet. The purpose of this study is to find the way to save the weight and cost of vehicle while achieving the various performance and requirements of vehicle (safety, aerodynamics, driver’s visibility and so on) from exterior styling point of view. We focused on the weight difference of the vehicles that shared the platform and were same overall dimensions.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Technical Paper

Co-operative Control of Regenerative Braking using a Front Electronic Wedge Brake and a Rear Electronic Mechanical Brake Considering the Road Friction Characteristic

2012-09-17
2012-01-1798
In this study, a co-operative regenerative braking control algorithm was developed for an electric vehicle (EV) equipped with an electronic wedge brake (EWB) for its front wheels and an electronic mechanical brake (EMB) for its rear wheels. The co-operative regenerative braking control algorithm was designed considering the road friction characteristic to increase the recuperation energy while avoiding wheel lock. A powertrain model of an EV composed of a motor, and batteries and a MATLAB model of the control algorithm were also developed. They were linked to the CarSim model of the vehicle under study to develop an EV simulator. The EMB and EWB were modeled with an actuator, screw, and wedge to develop an EMB and EWB simulator. A co-simulator for an EV equipped with an EWB for the front wheels and an EMB for the rear wheels was fabricated, composed of the EV and the EMB and EWB simulator.
Technical Paper

Test Method for Operational Deflection Shape Analysis of Squealing Brake Disc in Dynamic Condition

2012-09-17
2012-01-1807
In order to reduce brake squeal noise, it is important to identify operational deflection shape (ODS) of brake disc while squeal arises. However, in the conventional modal analysis and optical measurement, it is only able to identify limited ODS because of the technical limits. This paper details the test method to identify ODS in radial and tangential as well as axial direction of a brake disc in driving condition. Vibrational signal of a rotating disc was obtained by triaxial accelerometer installed to solid type discs/cooling fins of ventilated type discs, then ODS of disc were analyzed through digital signal processing.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

2012-04-16
2012-01-0639
Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
X